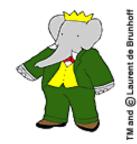
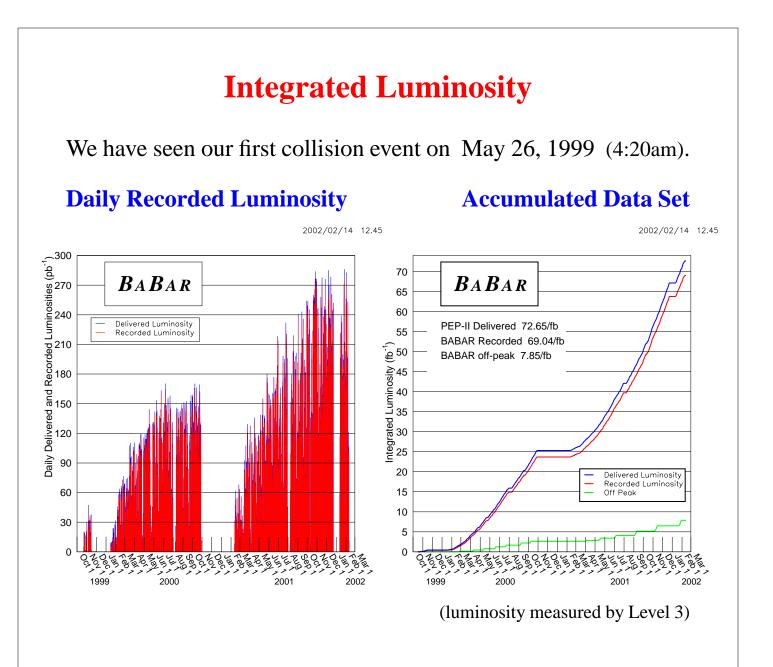
The **BABAR** Level 3 Trigger

First Joint Belle-BaBar Workshop

on Detector Issues

TRIUMF, Vancouver


Feburary 15, 2002

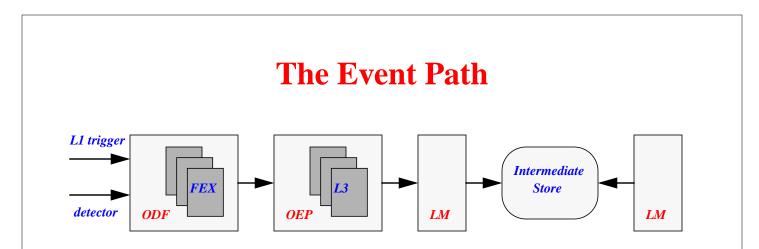

Rainer Bartoldus

The University of Iowa

Outline

- DAQ System & Level 3 Design
- Tools & Filters
- Monitoring & Diagnostics
- Performance & Upgrade
- Summary & Outlook

- About 69 fb⁻¹ of data recorded as of today 10-12 % off-resonance
- 95-98 % average data taking efficiency
- Less than 0.5 % deadtime


B-Factory Event Rates

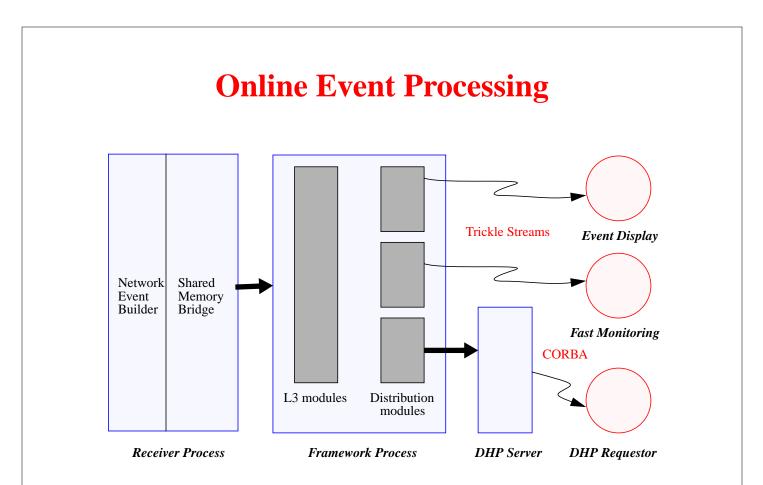
Physics Cross Sections on the Y(4S)

bb	1.05 nb
cc	1.30 nb
ss	0.35 nb
uu	1.39 nb
dd	0.35 nb
τ+τ-	0.94 nb
μ+μ-	1.16 nb
e ⁺ e ⁻	~50 nb

Machine Parameters and Data Acquisition Rates

- PEP-II Bunch crossing rate is 238 MHz (4.2 ns bunch spacing) => continuous readout, heavily pipelined, 2.7 us cmd spacing
- Beam currents of typically 920 mA (HER) on 1660 mA (LER)
- Current peak luminosity $4.3 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- L1 accept rate around 1 kHz --> L3 logging rate ~130 Hz

Dataflow (ODF)


- Transports and assembles event data from Front End Elements to the online processing farm
- Provides framework for Feature Extraction (FEX) code
- Fragments vectored to the correct node on the basis of a 56-bit timestamp (no load-balancing to avoid overhead)
- Backpressure implemented through UDP multicasts

Online Event Processing (OEP)

- Receives data from DAQ crates, runs event builder
- Provides framework for Level 3 Trigger (L3) and Fast Monitoring

Logging Manager (LM)

- Collects events from multiple nodes and *writes* files to Intermediate Store
- Ends the deadtime path
- *Reads* from IS and fans out to Prompt Reconstruction farm

Responsibilities

- Supports the Level 3 Trigger (L3)
- Provides for Fast Monitoring and Event Displays
- Provides for Distributed Histogramming Package (DHP)

Level 3 Trigger

Characteristics

- Makes logging decision
- First part of the DAQ system to see complete events
- Runs on the output rate of the Level 1 (hardware) trigger
- Processes data from:
 - Drift Chamber (DCH) + Drift Chamber Trigger (TSF)
 - Electromagnetic Calorimeter (EMC)
- Adds its own data to the event: reconstructed quantities, filter decisions

Design Requirements

- Reduce the L1 output rate from 2 kHz to 120 Hz
- Provide high efficiency for B physics (>99%) and other physics processes, *e.g.*, charm, tau and two-photon physics
- Execute fast algorithms: ~10 ms per event (given 70 % CPU on 32 nodes)
- Support online calibration and monitoring

Level 3 Trigger Design

Framework

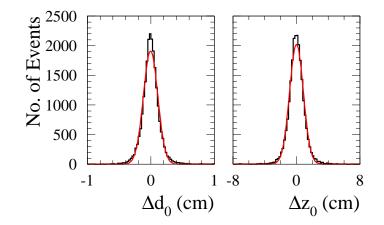
- Level 3 runs as part of the Online Event Processing (OEP)
- Implemented using the standard BaBar application framework
- Runs in both online and offline environment (simulation)
- Trigger logic ("execution web") is fully configurable at startup time

Tools and Filters

- Tools are sequences of framework modules that compute L3 objects, e.g., tracking and clustering
- Filters are modules that implement algorithms based on these objects, providing binary decisions
- Tools and Filters are combined to framework paths called L3 scripts

Event classification

- Level 3 classifies events in terms of track and cluster topologies
- Identification of particular physics processes is provided for monitoring and performance studies
- An exception are Bhabha events, which are identified for vetoing, luminosity measurement and calibration

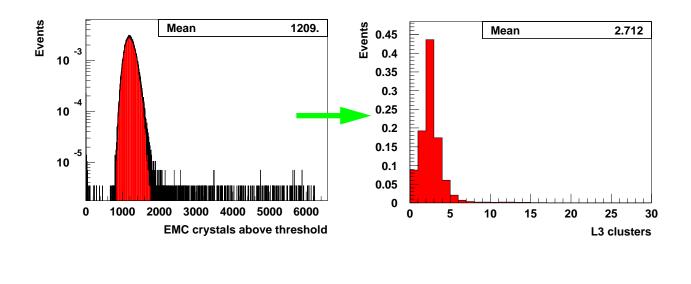

L3 DCH Tracking

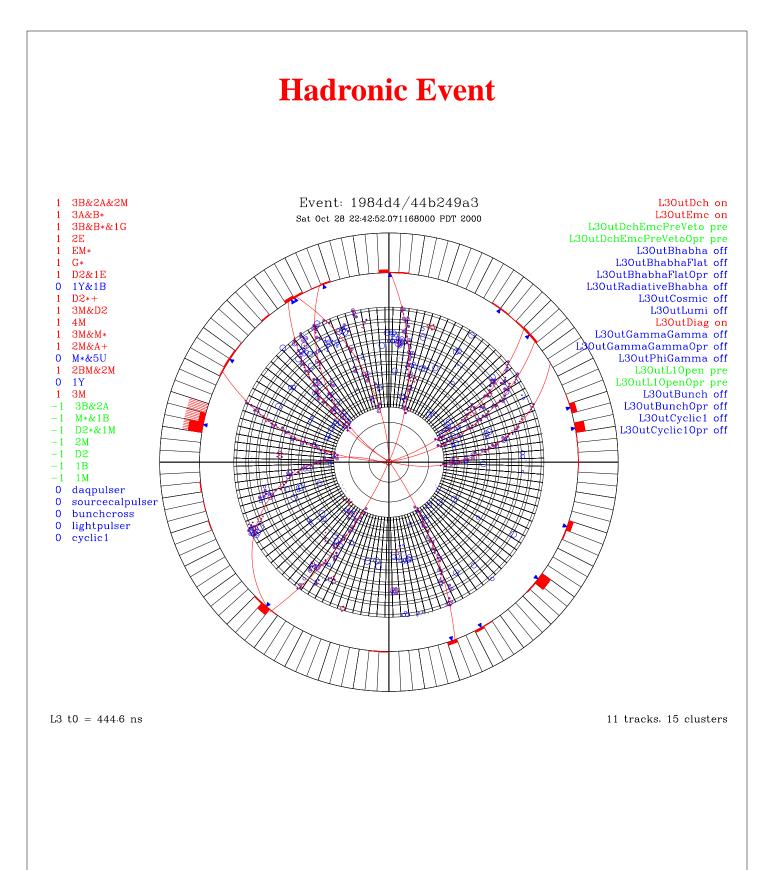
Algorithm

- Performs track finding using TSF segments from the L1 drift chamber trigger as seeds (search table driven pattern recognition)
- Finds the event t_0 from drift distances (to better than 4 ns)
- Performs a fast 5 parameter (helix) track fit to associated drift chamber hits (down to p_T ~ 250 MeV)

Tracking Resolution

Impact parameter difference from Bhabha events


Impact parameter resolution


• $\sigma(d_0) = 0.8 \text{ mm}, \ \sigma(z_0) = 6.1 \text{ mm}$

L3 EMC Clustering

Algorithm

- Reads out EMC crystal energies and peak times (above a 20 MeV noise cut)
- Applies a fast 2D clustering algorithm that performs a single iteration over the EMC data
- Neighbor information is configured via a lookup table
- Computes energy sum, centroid, average time and cluster shape variables (cluster moments)
- Clusters are reconstructed down to 100 MeV (well below MIP peak at 180 MeV)

L3 Physics Filters

Two orthogonal sets of filters

Drift Chamber Filters

IP Track Filter (requires tracks close to the interaction point)

- 2 tracks with: $|d_0| < 1.5 \text{ cm}, |z_0| < 10 \text{ cm}, p_T > 250 \text{ MeV}$
- or 1 track with: $|d_0| < 1.0 \text{ cm}, |z_0| < 7 \text{ cm}, p_T > 600 \text{ MeV}$

Calorimeter Filters

High Energy Filter and High Multiplicity Filter

- 2 clusters with $E_{lab} > 100$ MeV, $E_{CM} > 350$ MeV, $m_{pseudo} > 1.5$ GeV
- 4 clusters with $E_{lab} > 100$ MeV, $m_{pseudo} > 1.5$ GeV

Bhabha Veto

- Rejects Bhabha events from the above
- 2-prong and 1-prong (degraded Bhabha)
- Extremely pure selection
- Uses tight track-cluster matching, E/p
- Accounts for ISR by exploiting correlation between missing energy and acolinearity

These filters form the physics output line of Level 3

L3 Calibration and Diagnostics Filters

In addition, there is a variety of filters for calibration samples, offline luminosity measurement etc

Bhabha Accept

• High efficiency, for offline luminosity and calibration

Radiative Bhabha and Virtual Compton Scattering

• Missing p and neutral cluster, for calibration and PID

Online Luminosity

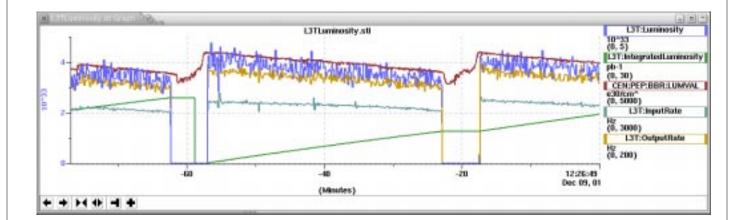
• Lepton-flavor blind selection, track-based, stable, well known efficiency / effective cross section

Hadronic Filters

• 3-prong selection, mass and event shape cuts, two flavors: all hadronic and *B*-enriched

Cosmics

• 2 tracks back-to-back in the lab frame


Random / Prescaled Triggers

- Prescaled unbiased L1 Accept
- 1 Hz cyclic and bunch crossing signal

Monitoring Applications

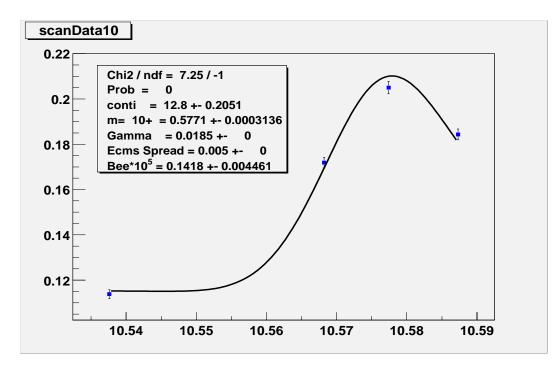
Luminosity and Trigger Rate Strip Chart

- From live L3 data, update rate on the order of 5 s
- Uses bridge from DHP to the EPICS slow control system
- Can be correlated with virtually any Process Variable

PEP-II Energy Scan

L3 Hadron Ratios

Hadronic selection:

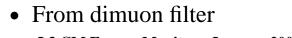

3+ good tracks, $p_T^{max} > 0.5 \text{ GeV}$, $p^{max} < 4.5 \text{ GeV}$, $m_{inv}^2 > 5 \text{ GeV}^2$

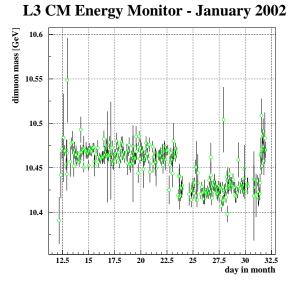
R2 < 0.9 (HadA), R2 < 0.4 (HadB) Fox-Wolfram Moment

Luminosity selection:

2 good tracks, $|\cos \theta| < 0.9$, $x_p > 0.8$, $\pi - \theta_1 - \theta_2 > 0.5$

Y(4S) Line Shape Fit




Run-to-Run Monitoring


Lorentz Boost Measurement

- Use 2-prong event selection
- Boost back into nominal CM system
- Calculate real boost from net acolinearity
- Very sensitive to single beam energy changes
- Independent monitor for B event yield

Center-of-Mass Energy

Rainer Bartoldus bartoldu@slac.stanford.edu (650) 926-4292 0.36 0.34 0.32

0.18 0.16 0.14 0.12

0.1

.um 0.24 0.22 0.2 0.18 12.5

12.5 15 17.5

15

17.5 20 22.5

20 22.5 25 27.5

5 30 32. day in month

5 30 32.5 day in month

L3 Hadron/Luminosity Ratios Hadron Ratios are monitored as part of the daily operations 2001/12/23 21.59 60 **B**A**B**A**R** 55 Run 2 50 45 BaBar Had A Ratio BaBar Had B Ratio 15 Ø 10 5 Mari 1 cep Sed NON 0 Jan' | HQ(') May OCt |Sec ∖ 1 6mg 1 JUI 1 Jan 1. 2002

Event Prescaling

Simple Prescalers

Counter-based, run separately on each L3 node, preserve input count

Example: unbiased L1 Accepts

• Save every *n*-th L1 trigger for efficiency studies (->0.5%)

Binned Prescalers

Array of prescale factors, depend on the value of an observable

Example: theta-flattened Bhabhas

 Offline luminosity measurement can undo prescaling w/o loss of statistical precision (30nb -> 10nb)

Weighted Prescalers

Select events on one trigger line based on the rate of another line

Example: background mixing

- Seed on luminosity trigger, 'scan forward' to find the next random trigger event (1:40 of B-events)
- Used to provide continuous, luminosity-weighted background sample, overlayed on top of simulated events at the pulse/ waveform level

//trg-mon/dl/L3TOepLines.dl		- 8 -
Level 3 Trigger Output Lines Rates	StatusPEPIIStable BeamsBaBarRUNNABLERun24623Timer794	FCTS Close Print
Trigger Line	Input Rate	Output Rate
1L3OutDch2L3OutEmc3L3OutDchEmcPreVeto4L3OutDchEmcPreVetoOpr5L3OutBhabha6L3OutBhabhaFlat7L3OutBhabhaFlatOpr8L3OutRadiativeBhabha9L3OutRadiativeBhabha9L3OutWirtualCompton10L3OutEmcBhabha11L3OutOcosmic13L3OutLumi14L3OutCosmic15L3OutGammaGamma16L3OutGammaGamma17L3OutDiag15L3OutGammaGamma18L3OutDataflowDamage19L3OutL1Open20L3OutBunch21L3OutBunchOpr23L3OutCyclic124L3OutCyclic125L3OutBackground26	92.7 64.6 231.1 231.1 231.1 231.1 167.7 12.2 1.3 5.1 2.5 1.5 0.7 27.4 12.3 5.4 0.0 0.0 1316.8 1316.8 1316.8 1316.8 1316.8 1316.8 1316.8 1316.8 1316.8 1316.1 1316.2 1316.3 1316.4 1316.5 1316.6 1316.7 10.0 11.1 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	92.6 63.8 4.7 0.0 12.3 1.5 5.0 2.7 2.5 1.5 0.0 12.3 1.5 5.0 2.7 2.5 1.5 0.8 0.0 12.0 5.1 3.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L3 Trigger Efficiencies							
From simulation of benchmark processes:							
	BB	$B \rightarrow \pi^0 \pi^0$	B- >τν	ττ			
1 track filter	89.9	69.9	86.5	94.1			
2 track filter	98.9	84.1	94.5	87.6			
Comb. DCH	99.4	89.1	96.6	95.5			
2 cluster filter	25.8	91.2	14.2	34.3			
4 cluster filter	93.5	95.2	62.3	37.8			
Comb. EMC	93.5	95.7	62.3	46.3			
Comb. L3	>99.9	99.3	98.1	97.3			
Comb. L1 + L3	>99.9	99.1	97.8	92.0			

• The concept of the orthogonal DCH/EMC triggers enables us to maintain a high, well measurable, generic $B\overline{B}$ efficiency

Level 3 Performance

Current Hardware

- 333 MHz *Sun Ultra-5*, 512 MB memory, 2 MB L2 cache, running *Solaris 5.8*
- 78 installed, currently 60 nodes used for Level 3

Performance Figures

- L3 process saturates at about 72 % CPU (rest spent in Event Builder and *Solaris* kernel)
- L3 takes ~10 ms per event, 70 Hz per node, ~4200 Hz limit

Design Upgrade Options

- Original pool was 32 nodes (with 2 kHz limit)
- Can add capacity in two ways, install more nodes, or replace with faster CPUs
- Explored node axis first
- Need to address scaling issues (serialization points, e.g. configuration database)
- Helped to pass the 3 x 10^{33} design limit, but cost in operations overhead

L3 Rate Extrapolation

Without any improvements:

	L3 Output Rate (Hz)			
	Now	$1 \ge 10^{34}$	$3 \ge 10^{34}$	
Hadronic + μ + τ	24	60	180	
Calibration	40	45	50	
Sum wanted events	64	105	230	
Bhabha "leakage"	21	53	160	
QED/two-photon	30	75	225	
Beam-wall	13	27	33	
Total	128	260	648	

New Challenges

- Beam-wall background will become much less important
- "Leakage" of Bhabha veto will become a major contamination
- Open trigger will be flooded by a variety of higher order QED and (low-mass) two-photon events
- With at least two thirds of these events coming form the IP, geometry will help less, one needs to exploit the kinematics

Level 3 Upgrade

Luminosity Increase

- Will need to sustain higher L1 Accept rates
- Will need to tighten the L3 output rate (*i.e.* what goes to Prompt Reconstruction)

New Level 3 Filter Strategies

A Tighter "Open" Trigger

- Phase out the 1-prong track trigger
- Form an open DCH trigger using a low-p_t 2-track filter
- Introduce effective mass cuts against low-mass two-photon events: eeee, eeµµ, eef₂
- Improve Bhabha veto efficiency further (no more 1-prong veto)

Will Need More Powerful Computational Tools

- Need to improve L3 reconstruction to achieve this
- Tracking has to reach down in p_T from 250 MeV to ~150 MeV
- Clustering be extended below the 20 MeV threshold

Summary

Looking Back

- PEP-II has achieved peak luminosities up to $4.3 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
- The Trigger and DAQ System have met the challenge of recording up to 300 pb⁻¹ of data a day, with negligible deadtime (< 0.5%)
- We have so far accumulated a total of 69 fb⁻¹ of data
- Both L1 and L3 have exceeded the design specs, providing
 > 99.9 % efficiency for BB events at less than 120 Hz logging rate
- Many applications of Level 3, that weren't part of the original design, proved useful for the experiment: online luminosity, hadron ratios, background skimming etc

Outlook

Toward 10³⁴ cm⁻² s⁻¹ and beyond

- A challenge for all detector components that have to respond to higher rates, higher occupancies, higher radiation doses etc
- High luminosity running will shift the focus of the Trigger from rejecting machine backgrounds to rejecting unwanted collision events
- The planned DCT z-trigger upgrade will help early to absorb L1 rate (and push L3 further in that direction)

--> see Su Dong's talk

- L3 upgrade will add the necessary capacity for keeping up with higher input rates and for tightening the physics output rate
- Geometrical criteria will help less, one needs to exploit the kinematics of the events
- Improved L3 tracking/clustering and new filter strategies are being developed to manage the increased (collision) event rates